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Thoughts

”You are old, father William,” the young man said,

”And your hair has become very white ;

And yet you incessantly ....

Do you think, at your age, it is right ?”

Lewis Carroll
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Thoughts

Andre Weil

Nothing is more fruitful - all mathematicians know it - than those obscure
analogies, those disturbing reflections of one theory in another ; those
furtive caresses, those inexplicable discords ; nothing also gives more
pleasure to the researcher. The day comes when the illusion dissolves ;
the yoked theories reveal their common source before disappearing.

Bernard Thessier

But the eureka moments - the moments when you feel you understand -
when you suddenly “see“ something - i.e., the answer to the “why“
questions - are not experiences that seem to be faithfully translatable by
any utterances at all.

Barry Mazur

There are metaphorical bridges that connect subjects and viewpoints
cajoling us to view one field from the perspective of another.
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Motivation

Motivation : to understand mathematically what physicists are
doing in constructing “tensor hierarchies“.

Classical gauge theories : gauge fields A can be regarded as 1-forms on
a manifold M with values in a representation V of a gauge Lie algebra g :

A ∈ Ω1(M; V )

Supergravity theories : In what are known as supergravity field theories
and others, techniques from classical theories do not behave as desired ;

The magic phrase is :

the field strengths do not transform covariantly.

That is, the transform of a certain field φ may not be proportional to φ,
i.e. not in an ideal generated by φ, but rather the transform contains
some unwanted terms.
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To paraphrase what physicist do, they add more fields. In particular,
to compensate for this failure, they add 2-forms B ∈ Ω2(M,W ) taking
values in a g-module W2 and a linear map ∂−1 : W2 −! V to kill the
obstruction/discrepancy to covariance.

But then there occurs a 2-form obstruction which is a ∂−1 cocycle ,
so they add a 3-form C ∈ Ω3(M,X ) taking values in a g-module W3.
Then again there is a failure of covariance ... and so on. Thus there are
further fields which are forms with values in the a sequence of g-modules
Wi .

This is the essence of a tensor hierarchy.
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Cast of Characters

• Lie crossed module aka differential crossed module
• Leibniz algebra
• embedding tensor
• tensor hierarchy
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A Lie crossed module consists of a pair of Lie algebras g0 and g−1

equipped with two Lie algebra homomorphisms

∂ : g−1 ! g0 and . : g0 ! Der(g−1),

the Lie algebra of Lie derivations,

better written as
x . b for x ∈ g0, b ∈ g−1

such that, for all x ∈ g0, b1, b2 ∈ g−1, we have . . .

A Lie crossed module is equivalently a dgLa (differential graded Lie
algebra) (g0 ⊕ g−1, ∂, [ . , . ]) :

• [ . , . ]
∣∣
g0∧g0

= [ . , . ]g0 ,
• [ . , . ]

∣∣
g−1∧g−1

= 0,

• [ . , . ]
∣∣
g0∧g−1

= action of g0 on g−1,
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A (left) Leibniz algebra is a vector space V together with

a bilinear operation ◦ : V ⊗ V ! V satisfying the relation :

x ◦ (y ◦ z) = (x ◦ y) ◦ z + y ◦ (x ◦ z).

Skew symmetry is NOT assumed, so the Jacobi identity may NOT
apply.

For V Leibniz, the adjoint map ad : V −! End(V ), x 7−! x ◦− is :

• a derivation of ◦ :

adx (y ◦ z) = adx (y) ◦ z + y ◦ adx (z))

• a morphism of Leibniz algebras : for x , y ∈ V ,

adx◦y = [adx , ady ]
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Embedding tensor

Let V be a representation of a Lie algebra g via ρ : g! End(V ),
hence with a binary operation

◦ : V ⊗ V ! V .

An embedding tensor is a lift of ad, the adjoint for ◦ :

g

V End(V )

ρ

ad

Θ

satisfying the quadratic constraint :

Θ(Θ(x) · y) = [Θ(x),Θ(y)]g
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Consequences

Consequences :
• V is a Leibniz algebra :

x ◦ y = Θ(x) · y

• h = Im(Θ) is a Lie subalgebra of g

•
• Θ is h-equivariant,

but NOT necessarily g-equivariant.
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Supergravity

In what are known as supergravity field theories and others,
techniques from classical theories do not behave as desired ;

The magic phrase is : the field strengths do not transform covariantly.
That is, the transform of a certain field φ may not be proportional to φ,
i.e. not in an ideal generated by φ.

To paraphrase what physicist do, they add more fields/forms.

In particular, to compensate for this failure, they add 2-forms
B ∈ Ω2(M,W ) taking values in a g-module W2 and a linear map
∂−1 : W2 −! V to kill the obstruction/discrepancy to covariance.

Now there occurs a 2-form obstruction which is a ∂−1 cocycle , so they
add a 3-form C ∈ Ω3(M,X ) taking values in a g-module W3 and so on.
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Tensor hierarchy

Tensor hierarchies

In certain physics papers, this leads to what physicists call a
tensor hierarchy,

i.e. a tower of g-modules forming a chain complex, in which the
successive p-form gauge fields A,B,C ,D, . . . take values :

. . . T−3 T−2 V g
∂−3 ∂−2 ∂−1 Θ

This is the tensor hierarchy associated to Θ

In particular cases considered in the physics literature, this chain
complex possesses a differential graded Lie algebra (dgLa) structure
containing physically relevant information
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Goal

Objective of the talk : build an appropriate purely mathematical functor{
Lie-Leibniz triple

}
−−−−−−−−!

{
dgLa

}
Strategy : build the tower of spaces step by step after making a wise
choice for the first step.

Our construction has been widely influenced by (Greitz et al., 2014 ;
Cederwall & Palmkvist, 2015).
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What is an embedding tensor ?

For V Leibniz, the adjoint map ad : V −! End(V ), x 7−! x ◦ − is :

• a derivation of ◦ :

adx (y ◦ z) = adx (y) ◦ z + y ◦ adx (z))

• a morphism of Leibniz algebras

adx◦y = [adx , ady ]

Assume that V is a representation of a Lie algebra g via
ρ : g! End(V ). An embedding tensor is a lift of ad :

g

V End(V )

ρ

ad

Θ

satisfying

1. g is a Lie algebra,
2. V is a g-module,
3. Θ : V ! g is a linear map called the embedding tensor, satisfying

the quadratic constraint :

Θ(Θ(x) · y) = [Θ(x),Θ(y)]g
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What is a Lie-Leibniz triple ?

Definition
A Lie-Leibniz triple is a triple (g,V ,Θ) where

• g is a Lie algebra,
• V is a g-module,
• Θ : V ! g is a linear map called the embedding tensor, satisfying

the quadratic constraint :

Θ(Θ(x) · y) = [Θ(x),Θ(y)]g
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Hierarchy

Recall h ⊂ g.

Theorem
From a Lie-Leibniz triple V Θ

−! g, we can build a dgLa :

. . . T−3 T−2 V h 0∂−3 ∂−2 ∂−1 Θ

extending the Lie crossed module

V h 0Θ
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Construction

The Leibniz product ◦ can be split in two parts :

[x , y ] = 1
2
(
x ◦ y − y ◦ x

)
and {x , y} = 1

2
(
x ◦ y + y ◦ x

)
so that : x ◦ y = [x , y ] + {x , y}

The skew-symmetric bracket [ . , . ] does not satisfy the Jacobi identity :[
x , [y , z ]

]
+
[
y , [z , x ]

]
+
[
z , [x , y ]

]
= −1

3
({

x , [y , z ]
}

+
{

y , [z , x ]
}

+
{

z , [x , y ]
})

Let the ideal of squares be I = Span
(
x ◦ x = {x , x}

∣∣ x ∈ V
)

The properties of the embedding tensor imply the inclusions :

I ⊂︸︷︷︸
(a)

Ker(Θ) ⊂︸︷︷︸
(b)

Ker(ad)

(a) Θ(x ◦ y) = [Θ(x),Θ(y)]g (b) adx (y) = Θ(x) · y
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Construction of T−2

In supergravity examples, one notices that the ideal of squares I is
generated by the 2-forms B. More precisely :

• gauge fields 1-forms A span T−1 = V
• gauge fields 2-forms B span some g-module T−2 such that

∂−1 : T−2 −! V is onto I

� if I is not a g-module =⇒ T−2 6= I
� Idea : lift { . , . } : S2V � I
� Ker

(
{ . , . }

)
⊂ S2(V ) is an h-

module, but may NOT be a g-
module.

First step of the construction
We define K−2 to be the biggest
g-sub-module of Ker

(
{ . , . }

)
, and

T−2 = S2(V )
/

K−2

T−2

S2(V ) I

h ⊂ g

{ . , . }

∂−1
q−2

Θ
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Construction of T−3

Let F−1 = V (in degree −1) and let F• =
⊕

i≥1 F−i be the free graded
Lie algebra generated by F−1.

F−2 = ∧2(F−1) ' S2(V ), ∧3(F−1) = S3(V ), V⊗S2(V ) ' ∧3(F−1)⊕F−3

0 V ⊗ K−2 V ⊗ K−2 0

S3(V ) V ⊗ S2(V ) F−3 0

S3(V ) V ⊗ T−2 F−3
/

K−3 0

id

id⊗q−2

q−3

Exactness of the second row implies exactness of the third, so we set

T−3 = F−3
/

K−3
18



Construction of T−(n+1)

Suppose that all the T−i = F−i
/

K−i have been built up to order n,
where K−i ⊂ F−i is a g-submodule.

0
⊕n−1

j=1 F−j ⊗ K−(n+1)+j
⊕n−1

j=1 F−j ⊗ K−(n+1)+j 0

Λ3(F•)
∣∣
−(n+1)

Λ2(F•)
∣∣
−(n+1)

F−(n+1) 0

Λ3(F•
)∣∣

−(n+1)
Λ2(⊕n

i=1 T−i
)∣∣

−(n+1)
F−(n+1)

/
K−(n+1) 0

id

q−(n+1)

We define T−(n+1) = F−(n+1)
/

K−(n+1) .
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The end of the hierarchy

Continuing the induction provides us with a (possibly infinite) graded
vector space T• =

⊕∞
i=1 T−i , the quotient of F• by the graded ideal K•.

It has the following properties :

• Every vector space T−i is a g-module ;
• every map q−i : ∧2T•|−i � T−i is g-equivariant ;
• T−1 = V (in degree −1) ;
• T−i = 0 for every i ≥ 2 if and only if (V , ◦) is a Lie algebra.

T• can be equipped with a graded Lie algebra structure with bracket :

q = J . , . K : ∧2T• −! T•

where q|∧2T•|−i is the quotient map q−i : ∧2T•|−i � T−i .
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What about physical implications ?

� In some “physical“ examples, it is known that the graded Lie bracket
of the tensor hierarchy contains all relevant physical information on the
field strengths and the gauge transformations (Greitz et al., 2013 ;
Bonezzi & Hohm, 2019)

� Beyond its mathematical interest per se, the construction has
promising applications in giving a better understanding of higher gauge
theories in e.g. double and in exceptional field theory, as well as any
forthcoming Leibniz gauge theory.

� Some differential graded algebras of fields and gauge parameters can
be extended to include equations of motion and Noether identities. Are
these related to tensor hierarchies ?
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And beyond ?

� The (differential) graded Lie algebra structure on the tensor hierarchy
we have constructed is different from that in (Palmkvist, 2013) and
(Palmkvist & Cederwall, 2015). It remains to check if the two
constructions coincide.

� How about generalizing the construction to Lie-Leibniz algebroids ?

� How about applying tensor hierarchies to foliations ?
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with Sylvain Lavau, arXiv :2003.07838v4

Thank You
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