Higher representations and Heegaard-Floer theory II

Raphael Rouquier
UCLA
GAP 2022
University of British Glumbia

$$
\text { May } 16,2022
$$

Monoidal category for $g\left((1,1)^{\circ}\right.$
(Joint work with Andrew Manion)

$$
g l(1 / 1)^{00}=\mathbb{C}_{\text {odd }}, U\left(g l(1 / 1)^{>0}\right)=\mathbb{C}[e] / e^{2}
$$

Naive: Monoidal cat $U_{\text {naive }}$ with two objects $I, E, E \otimes E=0$
Khovanov: U strict monoidal k-linear cat generated by an object E and a map $T: E^{2} \rightarrow E^{2}$ with relations $\tau^{2}=0$ and

char $k=2$. U differential cat. with $d(\tau)=1$
objects: $E^{n}, n \geq 0$. Ham $\left(E^{n}, E^{m}\right)=0$ if $m \neq n$.

$$
\begin{aligned}
& \text { End }\left(E^{n}\right) \stackrel{\sim}{\sim} H_{n}=k<T_{1}, \ldots, T_{n-1} \mid T_{i}^{2}=0, T_{i} T_{j}=T_{j} T_{i} \text { if }|i-j|>1, T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}> \\
& E^{i-1} E^{2} E^{n-i-1} \stackrel{T_{i}}{l i d} \quad d\left(T_{i}\right)=1 \\
& E^{i-1} E^{\tau} E^{i d} E^{n-i-1} \\
& \quad H^{*}\left(H_{n}^{\#}\right)=0 \quad \text { if } n \geqslant 2 \quad \text { So } \mid H^{*}(U)=U_{\text {naive }}
\end{aligned}
$$

Def A 2 -representation on a differential cat. v is a diff. monoidal functor $u \rightarrow \operatorname{\varepsilon nd}(v)$
Same as data of $E: V \rightarrow V, T \in$ End $\left(E^{2}\right)$ satisfying $T^{2}=0$ and braid relation
2 -reps are the object of a 2 -category: a 1 -arrow $(V, E, \tau) \rightarrow\left(v^{\prime}, E^{\prime}, \tau^{\prime}\right)$ is the data of $\Phi: V \rightarrow V^{\prime}$ diff functor and $\varphi: \Phi E \xrightarrow{\rightarrow} E^{\prime} \Phi \quad($ with $d(\varphi)=0)$ such that

$$
\begin{aligned}
& \Phi E^{2} \longrightarrow E^{\prime} \Phi E \longrightarrow E^{\prime 2} \Phi \\
& \Phi \Phi{ }^{\prime} \Phi{ }^{\prime} \tau^{\prime} \Phi \\
& \Phi E^{\prime} \longrightarrow E^{\prime} \Phi E \longrightarrow E^{\prime 2} \Phi
\end{aligned}
$$

* 2 -arrows

Assume E has a left adjoint E^{V}. Have $\tau \in E_{n d}\left(E^{2}\right) \leadsto$ End $\left(\left(E^{2}\right)^{v}\right)=E_{\text {nd }}\left(\left(E^{-}\right)^{2}\right)$ $\left(U, E^{v}, \tau\right)$: left dual. Similarly : if \in has a right actjoint, get right dual.

Examples . $v=$ differential k-vedr.space, $\epsilon=\tau=0$ "trivial 2-repr."

$$
\begin{aligned}
& \cdot v=u, E=e \otimes- \\
& \cdot v=u, E=-\otimes e
\end{aligned}
$$

- $v=u$ is a bimodule 2 -repr:it is acted on by $u \otimes u$

Lax bimod 2-rep on $v:\left(E_{1}, \tau_{1}\right),\left(E_{2}, \tau_{2}\right)$ 2-rep and $\sigma: E_{2} E_{1} \rightarrow E_{1} E_{2}$ such that

$$
\begin{array}{ccc}
E_{2}^{2} E_{1} E_{2} \sigma \\
\tau_{2} E_{1} E_{1} E_{2} \xrightarrow{\sigma \epsilon_{2}} E_{1} E_{2}^{2} & E_{2} E_{1}^{2} \xrightarrow{\sigma E_{1}} E_{1} E_{2} E_{1} \xrightarrow{E_{1} \sigma} E_{1}^{2} E_{2} \\
E_{2}^{2} E_{1} \rightarrow E_{2} E_{1} E_{2} \xrightarrow{E_{2} \sigma} \xrightarrow{\sigma E_{2}} E_{1} E_{2}^{2} & E_{2} \tau_{1}! & E_{2} E_{1}^{2} \rightarrow E_{1} E_{2} E_{1} \longrightarrow E_{1}^{2} E_{2}
\end{array}
$$

Coproduct
Teysor structore on 2 -rep? 2 -rep $\times 2-$ rep $\xrightarrow{(8)} 2$-rep 2 -birep n 2-laxbirep
$\left(W, E_{1}, \tau_{1}, E_{2}, \tau_{2}, \sigma\right)$ a lax bimod 2-rep.

* Define ΔW a differeytial car.
objects: pairs $(m, \pi), m \in$ idempotetr completion of pretrianglated clovere of $W 5$

$$
\pi \in \operatorname{Hom}\left(E_{2}(m), E_{1}(m)\right), d(\pi)=0
$$

such that $E_{2}^{2}(m) \xrightarrow{E_{2} \pi} E_{2} E_{1}(m) \xrightarrow{\sigma} E_{1} E_{2}(m) \xrightarrow{E_{1} \pi} E_{1}^{2}(m)$

$$
E_{2}^{2}(m) \underset{E_{2} \pi}{\tau_{2}} E_{2} E_{1}(m) \underset{\sigma}{\longrightarrow} E_{1} E_{2}(m) \underset{E_{1} \pi}{\longrightarrow} E_{1}^{2}(m)
$$

* Define $E: \Delta(w) \rightarrow \Delta(w)$ by

$$
\begin{aligned}
& E(m, \pi)=\left(\operatorname{Cone}\left(E_{L}(n)^{\pi}, E_{1}(m)\right),\left(\begin{array}{cc}
\sigma_{0} E_{2} \pi 0 \tau_{2} & \sigma \\
0 & \tau_{1} 0 E_{1 \pi}, \sigma
\end{array}\right)\right. \\
& E_{2}^{2}(m) \oplus E_{2} E_{1}(m) \\
& \sigma 0 E_{2} \pi \circ \tau_{2}!\sigma /{ }_{b} \tau_{, 0} E_{1 \pi} \pi \sigma \sigma \\
& E_{1} E_{2}(m) \oplus E_{E_{1} \pi}^{2}(m)
\end{aligned}
$$

