Notes available at bit.ly/KellersNotes
Lecture 3
Recall: Ka field, A a (small) dg k-calegory, 1.g. a dg algebra or ordinary algebra.
It has a Hochschild cochin complex $C(A, A)$ and $H^{\circ} C(A, A)=H H^{\circ}(A)=Z(A)$.
$C(A, A)$ carries a $B_{0 s}$-structure and therefore $H H^{*}(A, A)$ carries a cup product Gerstentaher bracket.
3.2 Singularity categories

A a right Noetherian k-algebra, e.g. $k\left[x_{1}, . ., x_{n}\right] / I$
mod $=$ cat. of finitely generated (right) A-moductes
$D^{6}($ mod $A)=$ bounded derived category
Ul

$$
\text { per }(A)=\text { perfect derived category }=\text { thick }\left(A_{A}\right) \leq D^{6}(\bmod A)
$$

$$
\begin{aligned}
\operatorname{sg}(A) & =D^{b}(\bmod A) / \text { per }(A) \quad \text { (Verdier quotient) } \\
& =\text { stable derived cat. } \quad \text { (Buchwertz 1986) } \\
& =\text { singularity cat. (0rlov 2003) }
\end{aligned}
$$

Rh: $\operatorname{sg}(A)=0$ if A is "smooth" (ie glair $A<\infty$)
Assume $A^{e}=A \otimes A^{9}$ is also Noetherian. also called "Tate-Hochschild cohomology" Def.: $H H_{\text {sg }}^{*}(A)=$ singular Hochschild cohom $:=\operatorname{Ext}_{\text {sg (A) }}^{*}(A, A)$. in any obvious way

Rh: Not hard: $H t_{s,}^{*}(A)$ is still graded commutative. But $s g\left(A^{C}\right)$ is not monoidal.
The (zhengfang Wang): a) $H H_{s j}^{*}$ (A) carries a natural (but very intricate!)
Gerslenhaber bracket (2015).
6) There is a canonical B_{∞} - algebra $C_{s g}(A, A)$ computing $H H_{s g}^{*}(A)$ (2018).

Rh: Key tool for 6): R, Kaufmann's spineless cacti operad (2007).
R. Kaufman (2002)

2. Wang (2018)

Figure 8: A summand $B_{\left(l_{1}, \cdots, l_{k-j}\right)}^{\left(i_{1}, \cdots, i_{j}\right)}\left(f ; g_{1}, \cdots, g_{k}\right)$ in the brace operation $f\left\{g_{1}, \cdots, g_{k}\right\}$.

Rh: So we have a complete structural analogy between singular and classical Hochsch. cohomology. This suggests that $H_{H_{s g}^{*}}^{*}$ might be an instance of $H H^{*}$.

Main Tho: There is a canonical algebra morphism can. dy int. of sg (A)

$$
\Psi \cdot H H_{\text {sg }}^{*}(A) \longrightarrow H H^{*}\left(\operatorname{sg}_{g}{ }_{g}(A)\right)
$$

which is "usually" invertible (leg. if chalk $=0$ and A is commutative).
Res:') It is not invertible if $K \leq A$ is a finite inseparable field extension. Then $\angle H S \neq O$, DHS $=0$.
2) The LHS is computable, the RHS is conceptually pleasing.

Conj: This Cisolmorphism lifts to the B_{∞}-level.

The (Chen-Li-wang): True for $A=k a /\left(k a_{1}\right)^{2}, Q$ a finite quiver.
Example: $Q: \Omega \Rightarrow k Q /(k Q,)^{2} \simeq k[\varepsilon] /\left(\varepsilon^{2}\right)$.

Xiao-Wu Chen in 2019

Huanhuan Li in 2022

Isom. of the main thm: $M=D_{\text {ag }}^{b}(\bmod A), \mathcal{L}=\operatorname{sgg}(A)$. We have dy functors

4.3 Application: reconstruction theorens for singularities, with 2heng Hua
4.3.1 Hypersurface singularilies

Thm $1($ Hua- $k): \quad S=\mathbb{C}\left(x_{1}, \ldots, x_{n} \mathbb{Z} \longrightarrow R=S(f)\right.$ isolated singularity.
Then R is determined (up to isom.) by dimR and sgag (R).

Sketch of proof:

$$
\begin{aligned}
& Z\left(\operatorname{sgg}_{\operatorname{cig}}(R)\right)=H H^{0}\left(\operatorname{sog}_{\text {og }}(R)\right) \frac{\text { Main }}{\text { Thm }} H H_{\text {sg }}^{0}(R) \\
& \delta /\left(f, \frac{\partial t}{\partial x_{1}}, \ldots, \frac{\partial t}{\partial x_{n}}\right) \quad \text { matrix }\left.\right|_{2} \text { Eisenbud ' } 80 \\
& \text { Tyarina alg. } \frac{\sim}{\substack{B A C H \\
1992}} H H^{2 r}(R) \frac{\sim}{\text { Buchweritz } 86} H H_{\text {sg }}^{2 r}(R), \forall r \gg 0
\end{aligned}
$$

dimR and the Tyurina algebra determine R up to 1somorphism (Mather-Yau 1982).
4.3.2 Compound Du Val singularities
$K=\mathbb{C}, R$ a complete local isolated CDV singularity (3-dim,, normal, generic hyperplane section is Du Val = Kleinian) fig $y \rightarrow X=$ SpuR a small crepant resolution (birational, som. small $\rightleftharpoons{ }^{*}$ crepant outside the exc. fiber, isom. in codem. 1, $\left.f^{*}\left(\omega_{x}\right)=\omega_{y}\right)$.

$F=$ reduced exc. fibre: a tree of cat. curves $F=\left(\bigcup_{i=1}^{n} c_{i}\right.$ contracted by f.

Associated (dg) algebras (cf. below):

- contraction algebra 1 (Donovan-Wemysu, 2013).
- derived contraction algebra Γ

$$
H^{p} \Gamma=0, \forall p>0
$$

Tho el def:: a) There is a can. connective dy algebra Γ which pro-repreents the non com. deformations (non com. bate, Lacedal'O2) $\underset{i=1}{\hat{O} O_{i}}$ in $D^{6}($ ch $y)$ [Efimov-Lunts-Orlov 2010].

6) Hop is isomorphic [Haw-] to 1 which represents the non com. deformations of $\bigoplus_{i=1}^{\vec{O}} G_{c_{i}}$ in coh(y) [Donovan-Wemyss, 2013]
Res: 1) Λ is finite-dem. (like the Tyurina algebra) but non commutative. Moreover, HP P is fin, dim. $\forall p \in \mathbb{Z}$.

Reid's width, bidegree of normal bundle Kala'gancer 0 Gopak kumar -Vafainv.
2) A determines many invariants of $R(D W 13$, Tod 14 , Hua-Toda $1 / 6, \ldots)$

Conj: (OW'13): The derived equiv, class of \cap determines R itself (up to sromorphism).

Tho 2 (Ha-): The derived ag. class of T determines R.
duster category (Amiot 10)
Strategy: Show that

$$
\operatorname{sg}(R) \rightarrow C_{\Gamma}^{\infty}:=\operatorname{per} \Gamma / D^{\rho d} \Gamma * H^{*} M \text { of finik total dem. }
$$

even at the dy level, and use The 1 (Reid: R is a hypusurfoce).

Res: We have $H^{*} \Gamma \simeq \Lambda \otimes k\left[u^{-\prime}\right], ~ u l=2$, so 1 determines $H^{*} P$
but Γ is not formal! Nevertheless, there is hope because of the following new approach.

Reformulation using duster-tilting objects esbu=5

Let $T \in C_{\Gamma} \simeq g g(R)$ be the image of $\Gamma \in p e r \Gamma$ under per $\Gamma \rightarrow C_{\Gamma}=p e r \Gamma / D^{f d} \Gamma$.

Amiot '09: Tis a 2Z-clurkr-tilting object of Cr [Iyama'oz], ie. $\operatorname{add}(T)=\left\{t \in C_{\Gamma} \mid E_{x} i(T, x)=0, \forall i d 2 \mathbb{Z}\right\}$
dosure under finite
circus sums and retraces $=\left\{X \in C_{\Gamma} / E x t^{i}(X, T)=0, \forall i \notin Z \mathbb{Z}\right\}$.
Moreover, we have $1=H^{0} \Gamma \simeq$ End (T). non derived.

The OW conjecture is implied by the more general:
CT-Conj: If C is a dy-enhanced triang. cat. (t some technical hyp) containing a $2 \mathbb{Z}$-cluster-tilting object T, then C iv determined by End (T) (non derived!) up to quari-equivalence of al y cartegonis.

Rh: This means that the higher structure (the dy entanument) is completely determined by lower stucluse (the non derived End (T)), which is surprising, We would get the DW Conj i as follows:

Re: Then is hope for the CT-Conji because of the following 2 facts:
(1) Tho (Mauro '22): Let C be a dy-enhanced triang. category (thyp.) containing a $1 \mathbb{Z}$-dueter-tilting object T. Then C is determined by Ended (T) (non derived) up to quasi-equivalence of de categories.

Examples of cat. with $1 \mathbb{Z}$-cluste-tilting object: sg(\mathbb{P}), where R Is a simple singularity of even dimension.
(2) Surprising feature of yama's "higher" homological theory: Many phenomena occuring in dimension 1 do generalize to higher dimensions!

Appencix A: Possible CDV quirere

Appendix B: Other constructions of P
B. 1 Via billing bundles ($V a B^{\prime} 0^{4}$)

Let $C_{1}, . ., C_{n}$ be the irreducible components of the exc. fibre. We have an isomorphism $\operatorname{Pic}(y) \leadsto \mathbb{Z}^{n}, \mathscr{L} \longrightarrow\left(\operatorname{deg} R / c_{i}\right)$ lion. Let $\mathcal{L}_{i}, k i \leqslant n$, be lime bundles with. $\operatorname{deg}\left(x_{i} \mid c_{j}\right)=\delta_{i j}$. Define
 $M_{i} \in \operatorname{coh}(y)$ as the "universal extension"

$$
0 \longrightarrow G_{y}^{3 i} \longrightarrow M_{i} \longrightarrow x_{i} \longrightarrow 0
$$

associated to a minimal set of generators of the R-module $H^{1}\left(V_{1}, X_{i}^{-1}\right) \equiv E x t^{1}\left(X_{i}, O_{y}\right)$.
Then $T=O_{y} \otimes \bigoplus_{i=1}^{n} M_{i}$ is a tilting bundle on $U_{\text {. }}$. Let er End (J) be the idempotent corresponding to the aired summand G_{y} of \tilde{T} and $\tilde{\Gamma}=$ End (T). Then $\Lambda=\tilde{\Gamma} /(e)$ and $\Gamma=\tilde{\Gamma} /(e)$.

The funtor ff: cohy \rightarrow modR sunds J to a cluster-tilting Cohen-Maccuelay modede T (cf. B2) and induces an iromorphism End $(T) \xrightarrow{\longrightarrow}$ Endp (T) so that thes conithuction agreer with that of 3.2.
B. 2 Via Cohen-Macaulay modules

$$
c m(R)=\left\{M \in \bmod R / E x t_{R}^{i}(M, R)=0, \forall i>0\right\} .
$$

Facts: $\mathrm{cm}(\mathbb{P})$ contains a duster-titing object T, ie.

1) $E x t^{1}(T, T)=0$
2) $\forall M \in \mathrm{~cm}(R), \rightarrow 0 \rightarrow T_{1} \rightarrow T_{0} \rightarrow M \rightarrow 0$, $T_{i} \in \operatorname{add}(T)$.
$\tilde{\Gamma}=\operatorname{End}_{p}(T)$ is independent of the choice of T up to derived equivalence.
We have $T=R^{n} \oplus T$, where T 'has no summands R. Let $e=\left[\begin{array}{cc}\mathbb{1}_{R} \cap & 0 \\ 0 & 0\end{array}\right] \in E_{R}(T)$. $\Rightarrow \Lambda \tilde{\text { der }} \operatorname{End} d_{p}(T) /(e)$ and $\Gamma \tilde{\omega} \operatorname{End}(T) /(e)^{\mu}$.
\leftarrow derived quotient.

B.3 Pictures: Mathematicians ciled in the sketch of proof of Thm 1

David Eisenbud 1947-

R.-O. Buchweitz 1952-2017

Orlando Villamayor
1923-1998

Andrea Solotar in 2010

Galina Tyurina 1938-1970

John N. Mather 1942-2017

Stephen Yau
1952-

T. Kadeishvili 1949-

B. Mitchell in 1981

W. Lowen in 2008

M. Van den Bergh 1960-

B. Toën, 1973-

C. Amiot in '08

S. Fomin, 1958-

A. Zelevinsky 1953-2013

