Lecture 2
Notes available at bit.ly/Kellers_Notes
Reminder
K a field, A a k-algebra (assoc., with 1, non com.).

$$
\left.C(A, A)=\text { Hochschild cochain complex }=\left(A \stackrel{A}{\longrightarrow}\left[\operatorname{Hom}_{k} ?\right], A\right) \rightarrow \operatorname{Hom}_{k}(A \otimes A, A) \rightarrow \ldots\right)
$$

$C(A, A)$ carries: an A_{∞}-alg. structure, brace operations $m_{n, l}, k, l \geqslant 1$ augmented bar constriction $B^{+}(C(A, A))$ cares: a differential, a mull. $B^{+} C \oplus B^{+} C \rightarrow B^{+} C$ $B^{+}(C(A, A))$ is a dy bialgebra $\Longleftrightarrow C(A, A)$ is a B_{∞}-algebra,

Even a brace alg.: $B_{r}=B_{\infty} /\left(m_{1,1}, k>1\right)$.
Konlsevich-Soibelman '99: $\mathbb{K} \mathbb{E}_{2} \simeq \operatorname{Br}$ if chark=0.
Next: Functoriality of the $B_{\infty s}$-struchere on Hochsehild cochains

Not:: $D A=$ unbounded derived category of Mod $=\{$ all night A-modules $\}$ objects: all complexes $\cdots \rightarrow M^{P} \rightarrow M^{p+1} \rightarrow \ldots$ of right A-modules morphisms: obtained from morphismi of complexes by formally inverting all quan-isomorphioms s: $L \longrightarrow M$ (ie. H^{*} s: $H^{*} L \leadsto H^{*} M$).

The ('O3): Suppose that $X \in \mathscr{D}\left(A^{\circ} \otimes B\right)$ is such that? $A_{A}^{4} X: D A \longrightarrow D B$ is fully faithful. Then there is a canonical "restriction" morphism

$$
\text { res }{ }_{x}: C(B, B) \longrightarrow C(A, A)
$$

in the homotopy category of B_{∞}-algebras (defined as the localization wir.l. all ais of the cat. of B_{∞}-algebras). It is invertible if $X_{B}^{k} ?: D(B O) \rightarrow D\left(A^{* P}\right)$ is also fully faithful.

Corr: If $A=A_{0} \oplus A_{1} \oplus \ldots$ is an (Adams-) graded Koszul algebra and
$A^{\prime}=\underset{P \cdot q}{(7)} \operatorname{Ext}_{A}^{p}\left(A_{0}, A_{0}\langle q\rangle\right.$ is (Adams-) graded Koszul ducal, we have

$$
C(A, A) \sim C\left(A^{\prime}, A^{\prime}\right)
$$

in the homotopy category of (Adams-) graded B_{∞} - algebras.

Rh: Preservation of the cup product iv deus to Buchweitz
Idea of proof: Use $\left.X=\bigoplus_{q \in \mathbb{Z}} \operatorname{RHom}_{A}\left(A_{0}, A_{0} T_{\mathrm{g}}\right\rangle\right) \in D^{\text {Adams }}\left(A \otimes\left(A^{\prime}\right)^{o p}\right)$.
(1) viewed as a dg algebra for the differential degree po with $d=0$

Sketch of the construction of resp: $C(B, B) \longrightarrow C(A, A)$ in the Tho:

Let

$$
\sigma=\left[\begin{array}{ll}
A & X \\
0 & B
\end{array}\right]=\text { "glueing" }\left(\begin{array}{ll}
B & A \\
B & x
\end{array}\right) \text { alg calcgory } y \text { with } 2 \text { objects }
$$

This is a dy $(=$ differential graded) algebra. Let $(6,6)$ be the product total complex of the Hochschild cochain complex of G. Let $R=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right] \subseteq\left[\begin{array}{ll}A & X \\ 0 & B\end{array}\right]$.
Let $C_{R}(\sigma, \sigma) \subseteq C(6, \sigma)$ be the "R-relative" subcomplex given by

$$
\operatorname{Hom}_{p^{e}}\left(G^{Q p}, 6\right) \subseteq \operatorname{Hom}_{k}\left(G^{\otimes p}, 6\right)
$$

(Categorical interpretation: $C_{R}(G, 6)$ is the H. cochain complex of the dy category f with 2 objects). The induction $C_{R}(6, G) \longrightarrow\left((6, G)\right.$ is a gis of B_{∞} - algebras.

Idea: $C_{R}(\sigma, G)$ is "intermediate" between $C(B, B)$ and $C(A, A)$:

$$
\begin{aligned}
& C_{R}(G, G) \xrightarrow{r s_{A}} C(A, A) \\
& N s_{B} \|_{\square}^{2}! \\
& C(B, B) \ldots{ }^{N R} \varnothing^{\prime}=x S_{X}
\end{aligned}
$$

We have the diagram

Here Nes_{A} and ws_{B} are morphisms of \mathcal{B}_{∞}-algebras and $\mathrm{ms} \mathrm{S}_{3}$ is a quadi-isomorphim. We put res x $=\operatorname{res}_{A} 0 \operatorname{mas}_{B}^{-1}$.
2. Bss-algebras and monoidal categonies (offer Lowen-Van den Bergh and Lurie)
V a homologically unital B_{∞}-algebra.
ModV $=\{$ homolog unilal right Aas-modulus over V $\}$

$$
\mathscr{D V}=\text { derived calegory }=(\text { ModV })[\text { gis'1 }]
$$

Lemma: DV "is" a monoidal triangulated cat. with unit $I=V$.
Proof (sketch):
$V^{+}=V \otimes k=$ assciated augmented A_{∞}-algebra, $C^{+}=B^{+} V=T^{C}(\Sigma V)$.

It becomes monoidal for $\underset{k}{\theta}$ with unit ke since C^{t} is a dy bialgebra.
 in 2003

We have

Here, we put $P=? \otimes C^{+}, L=? \otimes V^{+}, \quad \tau: C^{+} \rightarrow \Sigma V \simeq V \rightarrow V^{+}$can. twisting cochin.

RLE: It follows that

$$
\text { per }(V)=\text { perfect derived category }=\text { thick }(V) \subseteq \underset{T}{ } \subseteq
$$

is also monoidal triangulated with unit V. closure under $\Sigma^{ \pm}$, extensions, retracts Thus, per (V) is a unitally generated monoidal triangulated category.

Philosophy: "Every" unitally gen. monoidal triang. cat. should be of this form!

The (Lowen-Van den Burgh, 2021): Let (A, θ, I) be a monoidal K-lineal category s.th.
a) A is abelian (but θ is not supposed exact!)
b) A has enough projechives and ? P is exact for projective P.

Then $V=$ REnd (I) carries a Bos-structure sith.

becomes monoidal.
Example: A an algebra, $A=M o d\left(A^{e}\right)=\{A$-bimodueler $\}, \theta=\theta, I=A A_{A}$.
Then $V=\operatorname{RHom}_{A_{c}}(A, A)=C(A, A)$ as a $d g$ algebra (up to ais)
and L-VdB show that their consmection yields the classical Bos-str. (up to air).

Non example: X a top. space, $A=S h(X, A b), T=\underline{k} X$.
Then REnd $(x)=C_{s g}^{*}(x, k)$ has Bauer' Bos-str. but the
The doss not apply because of does not have enough projectives.
Laurie's the [HA, Prop. 7,1,2.8]
Let R be an \mathbb{E}_{2}-ring spectrum.
Let $D_{\infty} R$ be its so-enhanced derived category $(=M o d R$ in Curie's not.).
It underlies an E_{1}-monoidal stable ∞ - cut. $\left(D_{\infty} R\right)^{\otimes}\left(=M o d_{R}^{\otimes}\right)$.
It is compactly generated by the tensor unit $I=R$.
Let perm $(R)^{\otimes}$ be its subcat. of compact objects. of shifts of R
peron $(R)^{\infty}$ is a small \mathbb{E}-monoidal unitally generated stable ∞-category.
Thy (Curie): The construction $R \mapsto$ peso $(R)^{\otimes}$ yields an equivalence of ∞-cat. $\left\{\mathbb{E}_{2}\right.$-ring spectra $\} \rightarrow$ \{small \mathbb{E}_{1}-monoidal unitally gen. stable ∞-cal.\}

Rh: Let K be a field of characteristic O. Then the k-linearized E_{2}-operad $K E_{2}$ s quast-isomorphic to the brace opened Br [KS99]. It seems very likely that we have the

Corollary in progress (lasso): The construction $V \mapsto$ perigg $(V)^{\oplus}$ yields an equiv. of ∞ - cad.
\{B>> -algebras $\} \xrightarrow{\longrightarrow}$ \{small $k E_{1}$ - monoidal unitally gen. stable ag cat.\}
Lie. troy Br - algebras
Re: Recall that the bran operad B_{r} is a quotient of the B_{∞}-operd B_{∞} :

$$
B_{r}=B_{\infty} /\left(m_{k, l}, k>1\right) .
$$

So each Br-alg. is also a B_{∞}-alg. The Corollary in progress yields the converse (!):

$$
\begin{aligned}
& V \in\left\{B_{\infty} \text {-algebras }\right\} \cdots \cdots \xrightarrow{?} V /\left(m_{k, l}, k>1\right) \\
& (\text { pera. } V)^{\infty} \in\left\{\begin{array}{l}
\text { small E1, mon. } \\
\text { unitally gen. } \\
\text { stable ag cat. }
\end{array}\right\} \longleftarrow \sim\left\{B r_{\infty} \text {-alg. }\right\}
\end{aligned}
$$

This suggests the picture

More on this at a future minicourse!

