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Introduction

» Motivations: Applications of operads to the study of embedding
spaces Emb(M, N) & Grothendieck—Teichmiiller groups

» Fundamental case: Take M =R™, N=R", i, : R™ < R" the
standard embedding i, @ (x1,...,Xm) — (X1,...,Xm,0,...,0), and:
Emb (R, R") := {f : R™ < R"|3K compact with f igm\ k= im},
Immc(R™,R") := {f : R" 9 R" [3K compact with f igm\ k= im},
Emb (R, R") := hofib(Emb. (R, R") — Imm (R™,R")).
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» Theorem (recollections): We have homotopy equivalences

~

Emb (R™, R") MapgmBiMod(Dm,D,,)

3

~

()

~

Qmtl Mapgopop(Dm, Dn)

as soon as n — m > 3, where D, is the operad of little m-discs.
» (1) was obtained by Sinha (for m = 1) and by Arone-Turchin (for all
m > 1).
> (2) was obtained by Boavida-Weiss (for all m > 1).
> (3) was obtained by Dwyer-Hess (for m = 1) and by
Ducoulombier-Turchin (for all m > 1).
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Recollections on the operads of little discs

» The little n-discs spaces D,(r) consist of collections of r little n-discs
with disjoint interiors inside a fixed unit n-disc D" (see Figure).

disc centers
_>

€ Dy(4) € F(D?, 4)

> The configuration spaces F(ID", r) consist of collections of r distinct
points in the open disc D" (see Figure).

> There is an obvious homotopy equivalence D,(r) = F(ID", r).
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» The symmetric group X, acts on D,(r) by permutation of the little
disc indices (and on the configuration space similarly).

» The little n-discs spaces (unlike the configuration spaces) inherit
operadic composition operations

o; : Dn(k) % Dp(l) = Dn(k + 1 — 1)

OF

given by the following substitution process

@%

» The little n-discs operad D, is the object defined by the collection of
spaces D,(r) together with these structure operations.
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» Theorem (F. Cohen): For n > 2, we have an identity:
H.(Dj) = Poisp,
where Pois, is the operad of n-Poisson algebras, with:
xixz = [pt] € Ho(Dn(2)), 1, %] = [S"7'] € Hp-1(Dn(2)),

so that:

H.(Dn(2)) = Qx1x2 @ Q[x1, x2],
H.(Dn(3)) = Q x1x0x3
@ Q[x1, x2]x3 © Q[x1, x3]x2 ® Q x1[x2, x3]
® Q[[x1, x2], xs] ® Q[[x1, x3], %],
H,(Dn(4)) = ...

O
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» Theorem (V. Arnold, F. Cohen): For n > 2, we have an identity:

H*(Dy(r)) = H*(F(D", r)) = ANwij, 1<i#j<r)
(wijwjk + Wikwki + Wiiwy)

where wj; = 7}:(wgn-1), and cooperad structure operations
of + H'(Dp)(r) — H'(Dn)(r /1) @ H'(Dn)(1)

such that
wap®1 fora,bél,

wR®1 foradl, bel,
wip®1 foracl, bl
1®w,, fora,bel,

oj (wab) =

forr={1,...,k+/1—=1},1={i,...,i+/—1} Cr, and using
r/l~{1,...,i,...,k}and | ~{1,... [}
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Main objectives and results

» General goal: Give a combinatorial (graph complex) description of
Mapgopop(Dm, DY), and of Autgopop(Dg), where DY is a
rationalization of D,,.

» Remark: we have

Mapgop@p(Dmﬂ D(r?) ~ Map‘?op@p(Dma DH)Q

as soon as n — m > 3. The obtained description accordingly gives
results on the rational homotopy of the space of embeddings.
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» Theorem A (BF-Turchin-Willwacher): For n > m > 2, we have:
Mapg’op(‘)p(Dmv D(r[%)) ~ MC'(HGCmn)a

where HGC,,,, is the hairy graph complex. This relation extends to
the case n > m = 1 with HGCy, equipped with the Shoikhet
L o-structure.

» Corollary:
» Forany n>m>2 (or n > m = 1), we have the identity:

ﬂ*(Mapgopop(Dm, Dg),w) = H,_1(HGC},),

for any w € MCo(HGC,,,,), where HGC?,  is the complex HGC,,,
equipped with the twisted differential
0y = 0 + [w, —] + (extra terms in the L .-case).
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» The hairy graph complex: The complex HGC,,, is a complete Lie
dg-algebra which consists of connected graphs with internal vertices
e, internal edges, and external legs (the hairs), such as:

P O

The (homological) degree of a hairy graph is determined by counting
deg(e) := —n for each vertex, deg(e—s) := n — 1 for each internal
edge, deg(e-) = n — 1 — m for each hair, and by adding a global
degree shift by m.

» The differential is defined by the blow-up of internal vertices.
» The Lie bracket is given by:

o B
A Lol = AN JIN
VANVANRI ML IO N
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» Theorem B (BF-Turchin-Willwacher, BF-Willwacher): For n > 2, we
have a weak homotopy equivalence of simplicial monoids

Autg’op@p(D(g) ~ QX X Z.(GCE,),

where GC% denotes the Kontsevich graph complex (with bivalent
vertices allowed), and Z,(GC2) := z%(GC2 & Q*(A®)) is equipped with
a monoid structure deduced from the BCH formula.

» Remark: In the case n = 2, we have H,(GC3) = Q[1] @ grt;
(Willwacher), where grt; is the graded Grothendieck—Teichmiiller Lie
algebra, and this result reflects the relation:

Auth o, (DF) ~ GT(Q) x 50(2)2,

where GT(Q) is the Grothendieck—Teichmiiller group (BF, with
profinite generalizations by Horel and by Boavida-Horel-Robertson).
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» The Kontsevich graph complex: The complex GC? consists of
connected graphs of the form

B K

and where we take the grading such that deg(e) = —n,
deg(.—.) =n-—1.

» The differential is defined by the blow-up of internal vertices again.

> The Lie bracket is given by:

(X)) =2 CE) =20 0,
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Plan

» §1. The rational homotopy of operads

» §2. Formality and graph complex models of the little discs operads
» §3. Ideas in the proofs of Theorem A-B

» §4. Conclusion

> §A. Labelled hairy graphs and the generalization of the model
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§1. Introduction to the rational homotopy of operads

Quick recollections on Sullivan’s models:

» The model is given by Sullivan’s functor of PL differential forms
Q* : s8et®? — dg Com. For a simplex A" ={0 < x; <--- < x, <1},
we have:

Q" (A") = Q[x1, ..., Xn, dX1, ..., dxp].

» This functor has a left adjoint G, : dg Com — s8et® such that
Gn(A) = Morgg com(A,2*(A")), for each n € N. Let:

(A) := derived functor of G(A) = Morgg com(Ra, 2" (A®)),

where R4 =+ A is any cofibrant resolution of A in dg Com.

P> If X satisfies reasonable finiteness and nilpotence assumptions, then
X% = (@"(X))

defines a rationalization of the space X.
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» |dea: Take the category of cooperads in commutative dg-algebras
(the category of Hopf dg-cooperads) as a model for the category of
operads in simplicial sets (and in topological spaces).

» Theorem (BF):

> We have a Quillen pair G, : dg Hopf Op® = s8etOp® : Q) where

and Qf : P — Q;‘(P) is an operadic upgrading of the Sullivan functor of
PL forms.

> Let R be a cofibrant operad such that dimH*(R(r)) < oo for each r.
Then we have a quasi-isomorphism of dg-algebras

2 (R)(r) = 2"(R(r))

in each arity r.
> If we set RY := (©;(R)), then we have Re(r) ~ R(r)Q for each arity r.
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» Remark: The adjunction relations imply that giving a morphism of

Hopf dg-cooperads
o5 1 A — @ (P),

for P an operad in simplicial sets, is equivalent to giving a collection
of morphisms of commutative dg-algebras

¢ A(r) = 2°(P(r))

that:
P preserve the action of the symmetric group
» and make commute the diagrams

Ak +1—1) —2 @ (P(k + 1 — 1))

AK) @ A(l) 225 0* (P(K)) @ @*(P(1))
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» Theorem (BF-Willwacher): The model category of Hopf dg-cooperads
is equipped with a simplicial enrichment such that:

Mapdg HopfOp© (A’ B)
= MordngopfOpC /Q*(A’)(A ® Q*(A.)v B® Q*(A.))

» Corollary: For R a cofibrant operad in Top (satisfying
dimH*(R(r)) < 00), we have:

AU‘tg’opOp(RQ) ~ AU‘tZg HopfOp© (Q§(R))

with Autggﬂopfopc(—) deduced from this simplicial enrichment.
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§2. Formality and graph complex models of the little discs operads

» Theorem (BF-Willwacher, Kontsevich): We have a zigzag of
quasi-isomorphisms of Hopf dg-cooperads

Poisf, < - = RQ;(D,),

where:
» Pois; := Hom(Pois,, Q) = Hom(H.(D,), Q) = H*(D,),
> RQ;(D,) := derived functor of (D).

» Corollary:
h
~ Mapgg i}CopfOpC(POisz7 POIan)

> Remark: Kontsevich's construction involves a cooperad of graphs as
middle term.
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The graph cooperad (1)

» The components of the cooperad of graphs Graphs{(r) are spanned
by graphs with internal vertices ® and external vertices o; indexed by
i=1,...,r, and which fulfill the following assumptions:

1. Ioops O (edges with the same origin and endpoint) are not allowed,

2. the internal vertices o are at least trivalent,

3. each internal vertex e is connected to an external vertex o; by a path of
edges in the graph.

For instance, we have:
[ )
C
/0\2\>3 € Graphs§(3).
» The (cohomological) degree of a graph is defined by counting

deg®(e) = —n for each internal vertex e and deg*(—) = n— 1 for
each edge —.
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The graph cooperad (2)

» The differential of graphs is defined by merging internal vertices
together or by merging internal vertices and external vertices. For

instance:
N N oM N o N
o1 02

» The product of graphs is given by the union along external vertices.

For instance: @
Oﬂz 03 - 0®3 =01 O2 ©3.

» The cooperad coproducts
of : Graphsg,(k + I — 1) — Graphs;,(k) ® Graphs;,(/) are defined by
collapsing subgraphs based at the external vertices indexed by

iy...,i+1—1 onto an external vertex:
0.(7) = v/awa.
aCy
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The graph cooperad (3)

> Variation: Let Graphs2¢ be a variant of GraphsS with bivalent internal
vertices allowed. We have Graphs®¢ = Graphs¢?

» Observation: The Lie algebra GC2 acts on Graphs2° through
morphisms of Hopf dg-cooperads. For the dual operad in dg-modules
Graphs2(r) = Hom(Graphs2¢(r), Q) this action reads:

(X)) (OKY V)

—XI(QVCV”\/ \yg>

AN/

NNy N
P YY)

NN NNy \@v
:FZﬁ(/\\,\/ a<//\\,\l/> Vr
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» Theorem (Kontsevich, BF-Willwacher): We have a quasi-isomorphism
of Hopf dg-cooperads

Graphst = R (Dn)

such that Oﬂz = Wgn-1.

» Proposition: We have a quasi-isomorphism of Hopf dg-cooperads
GraphsS = H*(D,,) = Pois¢

such that 6\@ = W12.

» Observation: The graph cooperad Graphs?, is cofibrant in
dg HopfOp°.
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§3. Ideas in the proofs of Theorem A-B
(1) Applications of cofibrant and fibrant resolutions
» Proposition: We have
h . .
Mapdgﬂ-(opfOpC(Graphsga POS;) = Mapdg U-CopfOpc(Grapthn WC(POIan))7
where WE(—) is an analogue of the Boardman-Vogt W-construction

for Hopf dg-cooperads.
» Proposition: We have

Mapdg HopfOp© (Graphsﬁ, WC(POian))
~ MC,(BiDer(Graphsy,, W*(Pois;,))),

for some natural Lo-algebra structure on BiDer(Graphsg,, We(Poisy,)).
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(2) Proof of Theorem A
> We have

BiDer(Graphs;,, W°(Poisy,)) ~ Hom(/ Graphs;,, B¢(Pois,)),

where [ Graphs(r) is the complex of internally connected graphs
inside Graphs{(r) and BS(—) is the operadic cobar construction.

» We moreover have B(Pois{,) ~ A" Pois,, by the Koszul self duality of
the operad Pois,,.

» We have a natural map HGC,, — Hom(/ Graphs;,, A" Pois,,;) which
yields a quasi-isomorphism of L..-algebras

BiDer(Graphs:, W°(Pois,)) ~ HGC yp,

and the conclusion of Theorem A follows. O
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(3) Proof of Theorem B
» For a connected component Map(—, —), C Map(—, —), we have :

Map 4, %opfopc(Graphs,c,, We(Poisy,))y
~ MC,(BiDer(Graphs;,, W°(Poisf,))“)o ~ MCe(HGC% )0,

with w € MCo(HGCpp) corresponding to 1 : Graphs;, — W¢(Poisf,).
» For m = n and v corresponding to the identity map on D,, we have a
further reduction
£ HQ®GC?) & HGC

nn?

with GC? regarded as a trivial Lie algebra, and HGC?, is the variant of
HGC,,, where bivalent vertices are allowed.

> The mapping Z.(GC2) — Map, g{opfopc(Graphs?f, Graphs2©),4 yielded
by the action of the Lie algebra GC?, on Graphs,%c can be prolonged to a
weak-equivalence :

Zo(GC3) = Map :}Copfopc(Graphsic, W (Pois2®))y,

from which the result of Theorem B follows. 0
Benoit Fresse (Université de Lille) Rational homotopy of operads (...) GAP XVII, 5/18/2021 25 /30



§4. Conclusion

» Definition of graph complexes in positive characteristic?
» Combinatorial (graph complex) description of I"Iapf’}opop(Dm7 D/), and
of Autgopop(Dﬁ,\), where D, is the p-completion of D,?
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§8A. Labelled hairy graphs and the generalization of the model

> Context: We consider the case Emb.(M,R") for M C R™ an open
subset which contains a neighbourhood of co in R™.

» Theorem (recollections): We have
mC(I\/Iv Rn) ~ MapgmBiMod(DMv Dn)>

where Dy(r) = Emb** (] [" D™, M). (Follows from the results of
Arone-Turchin.)

» Objective: Give a combinatorial description of Man,,,BiMod(DMv DY).
» Remark: We now have

Mapgm BiMod(D/\/h D(r?)f ~ MapgmﬁiMod(DMﬂ Dn)97

for any f : Dy — Dp, where Map(—, —)f denotes the connected
component of the mapping spaces associated to such a map f,

h h Qy :
a.nd the map moMapp, giniod(Dm, D) = moMapp  ginioq(Dm, Diy) is
finite-to-one.
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» The decorated hairy graph complex HGC4,, where A is an augmented
commutative dg-algebra, consists of graphs with internal vertices e,
internal edges, and external legs (the hairs) decorated by elements of

A. The differential is defined by the blow-up of vertices again.

» The complex HGC4,, is equipped with an L.-structure given by the

operations i1, fi2, (43, . . . such that:

Ml( / \ )_Zal : f'p\

aj, - ”aJ'q
aiv.>/6
(M N
IR St S
a ajqbll---b,s
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» Theorem (BF-Turchin-Willwacher): Let A be a Sullivan model of
M= MU {cc}. For n > m > 2, we have:

Mapgm Bivtod(Dms DY) ~ MCa(HGC ap),

where HGC 4, is the decorated hairy graph complex.
» Example of application: The set moEmb(S® x S, R!!) is finite.

> Indeed, we have Emb(S® x S, R")@ ~ MC,(HGC - (535 p+(s7),11) and
HGC s (s3)x i+ (s9),11 is null in degree 1.)
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